Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neuropathol Exp Neurol ; 83(3): 144-160, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38323418

RESUMEN

The failure of chemoreflexes, arousal, and/or autoresuscitation to asphyxia may underlie some sudden infant death syndrome (SIDS) cases. In Part I, we showed that some SIDS infants had altered 5-hydroxytryptamine (5-HT)2A/C receptor binding in medullary nuclei supporting chemoreflexes, arousal, and autoresuscitation. Here, using the same dataset, we tested the hypotheses that the prevalence of low 5-HT1A and/or 5-HT2A/C receptor binding (defined as levels below the 95% confidence interval of controls-a new approach), and the percentages of nuclei affected are greater in SIDS versus controls, and that the distribution of low binding varied with age of death. The prevalence and percentage of nuclei with low 5-HT1A and 5-HT2A/C binding in SIDS were twice that of controls. The percentage of nuclei with low 5-HT2A/C binding was greater in older SIDS infants. In >80% of older SIDS infants, low 5-HT2A/C binding characterized the hypoglossal nucleus, vagal dorsal nucleus, nucleus of solitary tract, and nuclei of the olivocerebellar subnetwork (important for blood pressure regulation). Together, our findings from SIDS infants and from animal models of serotonergic dysfunction suggest that some SIDS cases represent a serotonopathy. We present new hypotheses, yet to be tested, about how defects within serotonergic subnetworks may lead to SIDS.


Asunto(s)
Muerte Súbita del Lactante , Lactante , Animales , Humanos , Anciano , Bulbo Raquídeo/metabolismo , Serotonina/metabolismo , Receptores de Serotonina/metabolismo
2.
Neuron ; 111(11): 1812-1829.e6, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37023756

RESUMEN

The sensation of itch is a protective response that is elicited by either mechanical or chemical stimuli. The neural pathways for itch transmission in the skin and spinal cord have been characterized previously, but the ascending pathways that transmit sensory information to the brain to evoke itch perception have not been identified. Here, we show that spinoparabrachial neurons co-expressing Calcrl and Lbx1 are essential for generating scratching responses to mechanical itch stimuli. Moreover, we find that mechanical and chemical itch are transmitted by separate ascending pathways to the parabrachial nucleus, where they engage separate populations of FoxP2PBN neurons to drive scratching behavior. In addition to revealing the architecture of the itch transmission circuitry required for protective scratching in healthy animals, we identify the cellular mechanisms underlying pathological itch by showing the ascending pathways for mechanical and chemical itch function cooperatively with the FoxP2PBN neurons to drive chronic itch and hyperknesis/alloknesis.


Asunto(s)
Prurito , Piel , Ratones , Animales , Ratones Endogámicos C57BL , Prurito/metabolismo , Piel/metabolismo , Neuronas/fisiología , Sensación
3.
Trends Neurosci ; 44(11): 915-924, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34565612

RESUMEN

A pericellular basket is a presynaptic configuration of numerous axonal boutons outlining a target neuron soma and its proximal dendrites. Recent studies show neurochemical diversity of pericellular baskets and suggest that neurotransmitter usage together with the dense, soma-proximal boutons may permit strong input effects on different timescales. Here we review the development, distribution, neurochemical phenotypes, and possible functions of pericellular baskets. As an example, we highlight pericellular baskets formed by projections of certain Pet1/Fev neurons of the serotonergic raphe nuclei. We propose that pericellular baskets represent convergence sites of competition or facilitation between neurotransmitter systems on downstream circuitry, especially in limbic brain regions, where pericellular baskets are widespread. Study of these baskets may enhance our understanding of monoamine regulation of memory, social behavior, and brain oscillations.


Asunto(s)
Axones , Neuronas , Axones/fisiología , Humanos , Neuronas/fisiología , Neurotransmisores , Terminales Presinápticos
4.
Acta Neuropathol ; 142(2): 295-321, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34019156

RESUMEN

Chronic traumatic encephalopathy (CTE) is a progressive tauopathy found in contact sport athletes, military veterans, and others exposed to repetitive head impacts. White matter rarefaction and axonal loss have been reported in CTE but have not been characterized on a molecular or cellular level. Here, we present RNA sequencing profiles of cell nuclei from postmortem dorsolateral frontal white matter from eight individuals with neuropathologically confirmed CTE and eight age- and sex-matched controls. Analyzing these profiles using unbiased clustering approaches, we identified eighteen transcriptomically distinct cell groups (clusters), reflecting cell types and/or cell states, of which a subset showed differences between CTE and control tissue. Independent in situ methods applied on tissue sections adjacent to that used in the single-nucleus RNA-seq work yielded similar findings. Oligodendrocytes were found to be most severely affected in the CTE white matter samples; they were diminished in number and altered in relative proportions across subtype clusters. Further, the CTE-enriched oligodendrocyte population showed greater abundance of transcripts relevant to iron metabolism and cellular stress response. CTE tissue also demonstrated excessive iron accumulation histologically. In astrocytes, total cell numbers were indistinguishable between CTE and control samples, but transcripts associated with neuroinflammation were elevated in the CTE astrocyte groups compared to controls. These results demonstrate specific molecular and cellular differences in CTE oligodendrocytes and astrocytes and suggest that white matter alterations are a critical aspect of CTE neurodegeneration.


Asunto(s)
Astrocitos/patología , Encefalopatía Traumática Crónica/patología , Oligodendroglía/metabolismo , Tauopatías/patología , Anciano , Astrocitos/metabolismo , Atletas , Traumatismos en Atletas/complicaciones , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Neuroinflamatorias/patología , Oligodendroglía/patología , Deportes , Sustancia Blanca/patología , Proteínas tau/metabolismo
5.
J Neurosci ; 41(22): 4840-4849, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33888606

RESUMEN

The lateral hypothalamus (LH), together with multiple neuromodulatory systems of the brain, such as the dorsal raphe nucleus (DR), is implicated in arousal, yet interactions between these systems are just beginning to be explored. Using a combination of viral tracing, circuit mapping, electrophysiological recordings from identified neurons, and combinatorial optogenetics in mice, we show that GABAergic neurons in the LH selectively inhibit GABAergic neurons in the DR, resulting in increased firing of a substantial fraction of its neurons that ultimately promotes arousal. These DRGABA neurons are wake active and project to multiple brain areas involved in the control of arousal, including the LH, where their specific activation potently influences local network activity leading to arousal from sleep. Our results show how mutual inhibitory projections between the LH and the DR promote wakefulness and suggest a complex arousal control by intimate interactions between long-range connections and local circuit dynamics.SIGNIFICANCE STATEMENT: Multiple brain systems including the lateral hypothalamus and raphe serotonergic system are involved in the regulation of the sleep/wake cycle, yet the interaction between these systems have remained elusive. Here we show that mutual disinhibition mediated by long range inhibitory projections between these brain areas can promote wakefulness. The main importance of this work relies in revealing the interaction between a brain area involved in autonomic regulation and another in controlling higher brain functions including reward, patience, mood and sensory coding.


Asunto(s)
Núcleo Dorsal del Rafe/fisiología , Neuronas GABAérgicas/fisiología , Área Hipotalámica Lateral/fisiología , Vías Nerviosas/fisiología , Vigilia/fisiología , Animales , Masculino , Ratones , Sueño/fisiología
6.
J Neurosci ; 41(12): 2581-2600, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33547164

RESUMEN

Brainstem median raphe (MR) neurons expressing the serotonergic regulator gene Pet1 send collateralized projections to forebrain regions to modulate affective, memory-related, and circadian behaviors. Some Pet1 neurons express a surprisingly incomplete battery of serotonin pathway genes, with somata lacking transcripts for tryptophan hydroxylase 2 (Tph2) encoding the rate-limiting enzyme for serotonin [5-hydroxytryptamine (5-HT)] synthesis, but abundant for vesicular glutamate transporter type 3 (Vglut3) encoding a synaptic vesicle-associated glutamate transporter. Genetic fate maps show these nonclassical, putatively glutamatergic Pet1 neurons in the MR arise embryonically from the same progenitor cell compartment-hindbrain rhombomere 2 (r2)-as serotonergic TPH2+ MR Pet1 neurons. Well established is the distribution of efferents en masse from r2-derived, Pet1-neurons; unknown is the relationship between these efferent targets and the specific constituent source-neuron subgroups identified as r2-Pet1Tph2-high versus r2-Pet1Vglut3-high Using male and female mice, we found r2-Pet1 axonal boutons segregated anatomically largely by serotonin+ versus VGLUT3+ identity. The former present in the suprachiasmatic nucleus, paraventricular nucleus of the thalamus, and olfactory bulb; the latter are found in the hippocampus, cortex, and septum. Thus r2-Pet1Tph2-high and r2-Pet1Vglut3-high neurons likely regulate distinct brain regions and behaviors. Some r2-Pet1 boutons encased interneuron somata, forming specialized presynaptic "baskets" of VGLUT3+ or VGLUT3+/5-HT+ identity; this suggests that some r2-Pet1Vglut3-high neurons may regulate local networks, perhaps with differential kinetics via glutamate versus serotonin signaling. Fibers from other Pet1 neurons (non-r2-derived) were observed in many of these same baskets, suggesting multifaceted regulation. Collectively, these findings inform brain organization and new circuit nodes for therapeutic considerations.SIGNIFICANCE STATEMENT Our findings match axonal bouton neurochemical identity with distant cell bodies in the brainstem raphe. The results are significant because they suggest that disparate neuronal subsystems derive from Pet1+ precursor cells of the embryonic progenitor compartment rhombomere 2 (r2). Of these r2-Pet1 neuronal subsystems, one appears largely serotonergic, as expected given expression of the serotonergic regulator PET1, and projects to the olfactory bulb, thalamus, and suprachiasmatic nucleus. Another expresses VGLUT3, suggesting principally glutamate transmission, and projects to the hippocampus, septum, and cortex. Some r2-Pet1 boutons-those that are VGLUT3+ or VGLUT3+/5-HT+ co-positive-comprise "baskets" encasing interneurons, suggesting that they control local networks perhaps with differential kinetics via glutamate versus serotonin signaling. Results inform brain organization and circuit nodes for therapeutic consideration.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Química Encefálica/fisiología , Núcleos del Rafe/metabolismo , Rombencéfalo/metabolismo , Serotonina/metabolismo , Factores de Transcripción/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/análisis , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Núcleos del Rafe/química , Rombencéfalo/química , Serotonina/análisis , Factores de Transcripción/análisis
7.
eNeuro ; 7(6)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33214315

RESUMEN

Brain networks underlying states of social and sensory alertness are normally adaptive, influenced by serotonin and dopamine (DA), and abnormal in neuropsychiatric disorders, often with sex-specific manifestations. Underlying circuits, cells, and molecules are just beginning to be delineated. Implicated is a subtype of serotonergic neuron denoted Drd2-Pet1, distinguished by expression of the type-2 DA receptor (Drd2) gene, inhibited cell-autonomously by DRD2 agonism in slice, and, when constitutively silenced in male mice, affects levels of defensive and exploratory behaviors (Niederkofler et al., 2016). Unknown has been whether DRD2 signaling in these Pet1 neurons contributes to their capacity for shaping defensive behaviors. To address this, we generated mice in which Drd2 gene sequences were deleted selectively in Pet1 neurons. We found that Drd2Pet1-CKO males, but not females, demonstrated increased winning against sex-matched controls in a social dominance assay. Drd2Pet1-CKO females, but not males, exhibited blunting of the acoustic startle response, a protective, defensive reflex. Indistinguishable from controls were auditory brainstem responses (ABRs), locomotion, cognition, and anxiety-like and depression-like behaviors. Analyzing wild-type Drd2-Pet1 neurons, we found sex-specific differences in the proportional distribution of axonal collaterals, in action potential (AP) duration, and in transcript levels of Gad2, important for GABA synthesis. Drd2Pet1-CKO cells displayed sex-specific differences in the percentage of cells harboring Gad2 transcripts. Our results suggest that DRD2 function in Drd2-Pet1 neurons is required for normal defensive/protective behaviors in a sex-specific manner, which may be influenced by the identified sex-specific molecular and cellular features. Related behaviors in humans too show sex differences, suggesting translational relevance.


Asunto(s)
Núcleo Dorsal del Rafe , Neuronas Serotoninérgicas , Acústica , Animales , Femenino , Masculino , Ratones , Reflejo de Sobresalto , Serotonina
8.
Elife ; 92020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32568072

RESUMEN

Among the brainstem raphe nuclei, the dorsal raphe nucleus (DR) contains the greatest number of Pet1-lineage neurons, a predominantly serotonergic group distributed throughout DR subdomains. These neurons collectively regulate diverse physiology and behavior and are often therapeutically targeted to treat affective disorders. Characterizing Pet1 neuron molecular heterogeneity and relating it to anatomy is vital for understanding DR functional organization, with potential to inform therapeutic separability. Here we use high-throughput and DR subdomain-targeted single-cell transcriptomics and intersectional genetic tools to map molecular and anatomical diversity of DR-Pet1 neurons. We describe up to fourteen neuron subtypes, many showing biased cell body distributions across the DR. We further show that P2ry1-Pet1 DR neurons - the most molecularly distinct subtype - possess unique efferent projections and electrophysiological properties. These data complement and extend previous DR characterizations, combining intersectional genetics with multiple transcriptomic modalities to achieve fine-scale molecular and anatomic identification of Pet1 neuron subtypes.


Asunto(s)
Núcleo Dorsal del Rafe/anatomía & histología , Ratones/anatomía & histología , Ratones/genética , Neuronas , Transcriptoma , Animales , Núcleo Dorsal del Rafe/metabolismo , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/metabolismo
9.
Psychopharmacology (Berl) ; 237(9): 2633-2648, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32494973

RESUMEN

RATIONALE: We probed serotonin neurons, those denoted by their developmental gene expression as r2Hoxa2-Pet1 (experiment 1) and Drd1a-Pet1 (experiment 2), for differential modulation of cocaine reward and memory as revealed by the expression and development of conditioned place preference (CPP) in transgenic mice. OBJECTIVES: To query roles in CPP, we inhibited neurons cell autonomously in vivo by activating the transgenically expressed, synthetic DREADD receptor hM4Di (Di) with the exogenous ligand clozapine-N-oxide (CNO). METHODS: To examine CPP expression, mice were conditioned using behaviorally active doses of cocaine (10.0 or 17.8 mg/kg) vs. saline followed by CPP assessment, first without neuron inhibition (post-conditioning session 1), and then with CNO-mediated neuron inhibition (post-conditioning session 2), followed by 4 more post-conditioning sessions. To examine CPP development, we administered CNO during conditioning sessions and then assayed CPP across 6 post-conditioning sessions. RESULTS: In r2Hoxa2-Pet1-Di mice, post-conditioning CNO administration did not impact cocaine CPP expression, but after CNO administration during conditioning, cocaine CPP (17.8 mg/kg) persisted across post-conditioning sessions compared with that in controls, suggesting a deficit in extinguishing cocaine memory. Drd1a-Pet1-Di mice, prior to CNO-Di-triggered neuronal inhibition, unexpectedly expressed heightened cocaine CPP (10.0 and 17.8 mg/kg) compared with controls, and this basal phenotype was transiently blocked by acute post-conditioning CNO administration and persistently blocked by repeated CNO administration during conditioning. CONCLUSION: Cocaine reward and memory likely map to distinct serotonergic Pet1 neuron subtypes. r2Hoxa2-Pet1 neurons normally may limit the durability of cocaine memory, without impacting initial cocaine reward magnitude. Drd1a-Pet1 neurons normally may help to promote cocaine reward.


Asunto(s)
Cocaína/administración & dosificación , Condicionamiento Clásico/efectos de los fármacos , Memoria/efectos de los fármacos , Recompensa , Neuronas Serotoninérgicas/efectos de los fármacos , Animales , Condicionamiento Clásico/fisiología , Inhibidores de Captación de Dopamina/administración & dosificación , Relación Dosis-Respuesta a Droga , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Serotoninérgicas/fisiología
10.
Curr Biol ; 29(13): 2145-2156.e5, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31231050

RESUMEN

Pathological aggression is commonly associated with psychiatric and neurological disorders and can impose a substantial burden and cost on human society. Serotonin (5HT) has long been implicated in the regulation of aggression in a wide variety of animal species. In Drosophila, a small group of serotonergic neurons selectively modulates the escalation of aggression. Here, we identified downstream targets of serotonergic input-two types of neurons with opposing roles in aggression control. The dendritic fields of both neurons converge on a single optic glomerulus LC12, suggesting a key pathway linking visual input to the aggression circuitry. The first type is an inhibitory GABAergic neuron: its activation leads to a decrease in aggression. The second neuron type is excitatory: its silencing reduces and its activation increases aggression. RNA sequencing (RNA-seq) profiling of this neuron type identified that it uses acetylcholine as a neurotransmitter and likely expresses 5HT1A, short neuropeptide F receptor (sNPFR), and the resistant to dieldrin (RDL) category of GABA receptors. Knockdown of RDL receptors in these neurons increases aggression, suggesting the possibility of a direct crosstalk between the inhibitory GABAergic and the excitatory cholinergic neurons. Our data show further that neurons utilizing serotonin, GABA, ACh, and short neuropeptide F interact in the LC12 optic glomerulus. Parallel cholinergic and GABAergic pathways descending from this sensory integration area may be key elements in fine-tuning the regulation of aggression.


Asunto(s)
Neuronas Colinérgicas/fisiología , Drosophila melanogaster/fisiología , Neuronas GABAérgicas/fisiología , Neuronas Serotoninérgicas/fisiología , Serotonina/metabolismo , Agresión/fisiología , Animales
11.
Nat Rev Neurosci ; 20(7): 397-424, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30948838

RESUMEN

Neurons that synthesize and release 5-hydroxytryptamine (5-HT; serotonin) express a core set of genes that establish and maintain this neurotransmitter phenotype and distinguish these neurons from other brain cells. Beyond a shared 5-HTergic phenotype, these neurons display divergent cellular properties in relation to anatomy, morphology, hodology, electrophysiology and gene expression, including differential expression of molecules supporting co-transmission of additional neurotransmitters. This diversity suggests that functionally heterogeneous subtypes of 5-HT neurons exist, but linking subsets of these neurons to particular functions has been technically challenging. We discuss recent data from molecular genetic, genomic and functional methods that, when coupled with classical findings, yield a reframing of the 5-HT neuronal system as a conglomeration of diverse subsystems with potential to inspire novel, more targeted therapies for clinically distinct 5-HT-related disorders.


Asunto(s)
Encéfalo/fisiología , Neuronas Serotoninérgicas/fisiología , Serotonina/genética , Serotonina/metabolismo , Transcriptoma/fisiología , Animales , Encéfalo/citología , Humanos
12.
eNeuro ; 6(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30899776

RESUMEN

Vestibulospinal neurons are organized into discrete groups projecting from brainstem to spinal cord, enabling vertebrates to maintain proper balance and posture. The two largest groups are the lateral vestibulospinal tract (LVST) group and the contralateral medial vestibulospinal tract (cMVST) group, with different projection lateralities and functional roles. In search of a molecular basis for these differences, we performed RNA sequencing on LVST and cMVST neurons from mouse and chicken embryos followed by immunohistofluorescence validation. Focusing on transcription factor (TF)-encoding genes, we identified TF signatures that uniquely distinguish the LVST from the cMVST group and further parse different rhombomere-derived portions comprising the cMVST group. Immunohistofluorescence assessment of the CNS from spinal cord to cortex demonstrated that these TF signatures are restricted to the respective vestibulospinal groups and some neurons in their immediate vicinity. Collectively, these results link the combinatorial expression of TFs to developmental and functional subdivisions within the vestibulospinal system.


Asunto(s)
Corteza Cerebral/citología , Neuronas/citología , Médula Espinal/citología , Factores de Transcripción/metabolismo , Núcleos Vestibulares/citología , Animales , Evolución Biológica , Corteza Cerebral/metabolismo , Embrión de Pollo , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Médula Espinal/metabolismo , Transcriptoma , Núcleos Vestibulares/metabolismo
13.
J Clin Invest ; 129(1): 310-323, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30507615

RESUMEN

We investigated how pathological changes in newborn hippocampal dentate granule cells (DGCs) lead to epilepsy. Using a rabies virus-mediated retrograde tracing system and a designer receptors exclusively activated by designer drugs (DREADD) chemogenetic method, we demonstrated that newborn hippocampal DGCs are required for the formation of epileptic neural circuits and the induction of spontaneous recurrent seizures (SRS). A rabies virus-mediated mapping study revealed that aberrant circuit integration of hippocampal newborn DGCs formed excessive de novo excitatory connections as well as recurrent excitatory loops, allowing the hippocampus to produce, amplify, and propagate excessive recurrent excitatory signals. In epileptic mice, DREADD-mediated-specific suppression of hippocampal newborn DGCs dramatically reduced epileptic spikes and SRS in an inducible and reversible manner. Conversely, specific activation of hippocampal newborn DGCs increased both epileptic spikes and SRS. Our study reveals an essential role for hippocampal newborn DGCs in the formation and function of epileptic neural circuits, providing critical insights into DGCs as a potential therapeutic target for treating epilepsy.


Asunto(s)
Giro Dentado/fisiopatología , Epilepsia/fisiopatología , Red Nerviosa/fisiopatología , Animales , Animales Recién Nacidos , Giro Dentado/metabolismo , Giro Dentado/patología , Drogas de Diseño/farmacología , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Epilepsia/patología , Masculino , Ratones , Ratones Transgénicos , Red Nerviosa/metabolismo , Red Nerviosa/patología
14.
Elife ; 72018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30350781

RESUMEN

Cardiorespiratory recovery from apneas requires dynamic responses of brainstem circuitry. One implicated component is the raphe system of Pet1-expressing (largely serotonergic) neurons, however their precise requirement neonatally for homeostasis is unclear, yet central toward understanding newborn cardiorespiratory control and dysfunction. Here we show that acute in vivo perturbation of Pet1-neuron activity, via triggering cell-autonomously the synthetic inhibitory receptor hM4Di, resulted in altered baseline cardiorespiratory properties and diminished apnea survival. Respiratory more than heart rate recovery was impaired, uncoupling their normal linear relationship. Disordered gasp recovery from the initial apnea distinguished mice that would go on to die during subsequent apneas. Further, the risk likelihood of apnea-related mortality associated with suppression of Pet1 neurons was higher for animals with baseline elevated ventilatory equivalents for oxygen. These findings establish that Pet1 neurons play an active role in neonatal cardiorespiratory homeostasis and provide mechanistic plausibility for the serotonergic abnormalities associated with SIDS.


Asunto(s)
Apnea/patología , Tronco Encefálico/patología , Frecuencia Cardíaca , Neuronas/patología , Frecuencia Respiratoria , Factores de Transcripción/análisis , Animales , Animales Recién Nacidos , Homeostasis , Ratones , Análisis de Supervivencia
15.
Cell ; 168(1-2): 295-310.e19, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28041852

RESUMEN

The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception.


Asunto(s)
Médula Espinal/citología , Médula Espinal/metabolismo , Sinapsis , Animales , Axones/metabolismo , Dendritas/metabolismo , Interneuronas/citología , Interneuronas/metabolismo , Mecanorreceptores/metabolismo , Ratones , Biología Molecular/métodos , Vías Nerviosas , Percepción del Tacto
16.
J Neurosci ; 37(7): 1807-1819, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28073937

RESUMEN

Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 (Tac1) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1, referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine-N-oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO2Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei.SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using genetic tools, we characterize a 5-HT neuron subtype defined by expression of Tachykinin1 and Pet1 (Tac1-Pet1 neurons), mapping soma localization to the caudal medulla primarily and axonal projections to brainstem motor nuclei most prominently, and, when silenced, observed blunting of the ventilatory response to inhaled CO2Tac1-Pet1 neurons thus appear distinct from and contrast previously described Egr2-Pet1 neurons, which project primarily to chemosensory integration centers and are themselves chemosensitive.


Asunto(s)
Lectinas/metabolismo , Neuronas/fisiología , Núcleos del Rafe/citología , Respiración , Factores de Transcripción/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Dióxido de Carbono/farmacología , Colina O-Acetiltransferasa/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacología , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Lectinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Núcleos del Rafe/metabolismo , Respiración/efectos de los fármacos , Serotonina/metabolismo , Factores de Transcripción/genética , Tirosina 3-Monooxigenasa/metabolismo
17.
Stroke ; 47(12): 3005-3013, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27895300

RESUMEN

BACKGROUND AND PURPOSE: A ruptured intracranial aneurysm (IA) is the leading cause of a subarachnoid hemorrhage. This study seeks to define a specific gene whose mutation leads to disease. METHODS: More than 500 IA probands and 100 affected families were enrolled and clinically characterized. Whole exome sequencing was performed on a large family, revealing a segregating THSD1 (thrombospondin type 1 domain containing protein 1) mutation. THSD1 was sequenced in other probands and controls. Thsd1 loss-of-function studies in zebrafish and mice were used for in vivo analyses and functional studies performed using an in vitro endothelial cell model. RESULTS: A nonsense mutation in THSD1 was identified that segregated with the 9 affected (3 suffered subarachnoid hemorrhage and 6 had unruptured IA) and was absent in 13 unaffected family members (LOD score 4.69). Targeted THSD1 sequencing identified mutations in 8 of 507 unrelated IA probands, including 3 who had suffered subarachnoid hemorrhage (1.6% [95% confidence interval, 0.8%-3.1%]). These THSD1 mutations/rare variants were highly enriched in our IA patient cohort relative to 89 040 chromosomes in Exome Aggregation Consortium (ExAC) database (P<0.0001). In zebrafish and mice, Thsd1 loss-of-function caused cerebral bleeding (which localized to the subarachnoid space in mice) and increased mortality. Mechanistically, THSD1 loss impaired endothelial cell focal adhesion to the basement membrane. These adhesion defects could be rescued by expression of wild-type THSD1 but not THSD1 mutants identified in IA patients. CONCLUSIONS: This report identifies THSD1 mutations in familial and sporadic IA patients and shows that THSD1 loss results in cerebral bleeding in 2 animal models. This finding provides new insight into IA and subarachnoid hemorrhage pathogenesis and provides new understanding of THSD1 function, which includes endothelial cell to extracellular matrix adhesion.


Asunto(s)
Aneurisma Roto/genética , Aneurisma Intracraneal/genética , Hemorragia Subaracnoidea/genética , Trombospondinas/genética , Animales , Codón sin Sentido , Modelos Animales de Enfermedad , Exoma , Predisposición Genética a la Enfermedad , Humanos , Ratones , Linaje , Pez Cebra , Proteínas de Pez Cebra
18.
Cell Rep ; 17(8): 1934-1949, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851959

RESUMEN

Escalated aggression can have devastating societal consequences, yet underlying neurobiological mechanisms are poorly understood. Here, we show significantly increased inter-male mouse aggression when neurotransmission is constitutively blocked from either of two subsets of serotonergic, Pet1+ neurons: one identified by dopamine receptor D1(Drd1a)::cre-driven activity perinatally, and the other by Drd2::cre from pre-adolescence onward. Blocking neurotransmission from other Pet1+ neuron subsets of similar size and/or overlapping anatomical domains had no effect on aggression compared with controls, suggesting subtype-specific serotonergic neuron influences on aggression. Using established and novel intersectional genetic tools, we further characterized these subtypes across multiple parameters, showing both overlapping and distinct features in axonal projection targets, gene expression, electrophysiological properties, and effects on non-aggressive behaviors. Notably, Drd2::cre marked 5-HT neurons exhibited D2-dependent inhibitory responses to dopamine in slices, suggesting direct and specific interplay between inhibitory dopaminergic signaling and a serotonergic subpopulation. Thus, we identify specific serotonergic modules that shape aggression.


Asunto(s)
Agresión/fisiología , Neuronas Serotoninérgicas/metabolismo , Animales , Axones/metabolismo , Conducta Animal , Encéfalo/patología , Silenciador del Gen , Genes Reporteros , Integrasas/metabolismo , Masculino , Ratones Endogámicos C57BL , Fenotipo , Receptores de Dopamina D2/metabolismo , Reproducibilidad de los Resultados , Transmisión Sináptica
19.
J Neurosci ; 36(14): 3943-53, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27053202

RESUMEN

Sudden infant death syndrome (SIDS) cases often have abnormalities of the brainstem raphe serotonergic (5-HT) system. We hypothesize that raphe dysfunction contributes to a failure to autoresuscitate from multiple hypoxic events, leading to SIDS. We studied autoresuscitation in two transgenic mouse models in which exocytic neurotransmitter release was impaired via conditional expression of the light chain from tetanus toxin (tox) in raphe neurons expressing serotonergic bacterial artificial chromosome drivers Pet1 or Slc6a4. These used recombinase drivers targeted different portions of medullary raphe serotonergic, tryptophan hydroxylase 2 (Tph2)(+) neurons by postnatal day (P) 5 through P12: approximately one-third in triple transgenic Pet1::Flpe, hßactin::cre, RC::PFtox mice; approximately three-fourths inSlc6a4::cre, RC::Ptox mice; with the first model capturing a near equal number of Pet1(+),Tph2(+) versus Pet1(+),Tph2(low or negative) raphe cells. At P5, P8, and P12, "silenced" mice and controls were exposed to five, ∼37 s bouts of anoxia. Mortality was 5-10 times greater in "silenced" pups compared with controls at P5 and P8 (p = 0.001) but not P12, with cumulative survival not differing between experimental transgenic models. "Silenced" pups that eventually died took longer to initiate gasping (p = 0.0001), recover heart rate (p = 0.0001), and recover eupneic breathing (p = 0.011) during the initial anoxic challenges. Variability indices for baseline breathing distinguished "silenced" from controls but did not predict mortality. We conclude that dysfunction of even a portion of the raphe, as observed in many SIDS cases, can impair ability to autoresuscitate at critical periods in postnatal development and that baseline indices of breathing variability can identify mice at risk. SIGNIFICANCE STATEMENT: Many sudden infant death syndrome (SIDS) cases exhibit a partial (∼26%) brainstem serotonin deficiency. Using recombinase drivers, we targeted different fractions of serotonergic and raphe neurons in mice for tetanus toxin light chain expression, which prevented vesicular neurotransmitter release. In one model, approximately one-third of medullary Tph2(+) neurons are silenced by postnatal (P) days 5 and 12, along with some Pet1(+),Tph2(low or negative) raphe cells; in the other, approximately three-fourths of medullary Tph2(+) neurons, also with some Tph2(low or negative) cells. Both models demonstrated excessive mortality to anoxia (a postulated SIDS stressor) at P5 and P8. We demonstrated fatal vulnerability to anoxic stress at a specific time in postnatal life induced by a partial defect in raphe function. This models features of SIDS.


Asunto(s)
Período Crítico Psicológico , Hipoxia/mortalidad , Hipoxia/fisiopatología , Núcleos del Rafe/fisiopatología , Transmisión Sináptica , Envejecimiento/psicología , Animales , Animales Recién Nacidos , Silenciador del Gen , Frecuencia Cardíaca , Humanos , Recién Nacido , Ratones , Ratones Transgénicos , Núcleos del Rafe/efectos de los fármacos , Mecánica Respiratoria , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Muerte Súbita del Lactante , Transmisión Sináptica/efectos de los fármacos , Toxina Tetánica/toxicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo
20.
Cell Rep ; 13(9): 1965-76, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26655908

RESUMEN

Despite the well-established role of serotonin signaling in mood regulation, causal relationships between serotonergic neuronal activity and behavior remain poorly understood. Using a pharmacogenetic approach, we find that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures. In a developmental mouse model of altered emotional behavior, increased anxiety and depression-like behaviors correlate with reduced dorsal raphé and increased median raphé serotonergic activity. These mice display blunted responses to serotonergic stimulation and behavioral rescues through serotonergic inhibition. Furthermore, we identify opposing consequences of dorsal versus median raphé serotonergic neuron inhibition on floating behavior, together suggesting that median raphé hyperactivity increases anxiety, whereas a low dorsal/median raphé serotonergic activity ratio increases depression-like behavior. Thus, we find a critical role of serotonergic neuronal activity in emotional regulation and uncover opposing roles of median and dorsal raphé function.


Asunto(s)
Conducta Animal , Neuronas Serotoninérgicas/metabolismo , Animales , Ansiedad , Conducta Animal/efectos de los fármacos , Línea Celular , Clozapina/análogos & derivados , Clozapina/farmacología , Trastorno Depresivo/metabolismo , Trastorno Depresivo/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Serotonina/metabolismo , Natación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA